Advertisement

Synaptic vesicle cycle and amyloid β: Biting the hand that feeds

  • Saak V. Ovsepian
    Correspondence
    Corresponding author. Tel.: +49 (0) 89 3187 4454; Fax: +49 (0)162 900 5960.
    Affiliations
    Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany

    Munich School of Bioengineering, Technical University Munich, Munich, Germany

    International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
    Search for articles by this author
  • Valerie B. O'Leary
    Affiliations
    Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
    Search for articles by this author
  • Laszlo Zaborszky
    Affiliations
    Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
    Search for articles by this author
  • Vasilis Ntziachristos
    Affiliations
    Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany

    Munich School of Bioengineering, Technical University Munich, Munich, Germany
    Search for articles by this author
  • J. Oliver Dolly
    Affiliations
    International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
    Search for articles by this author
Published:February 26, 2018DOI:https://doi.org/10.1016/j.jalz.2018.01.011

      Abstract

      The synaptic vesicle cycle (SVC) holds center stage in the biology of presynaptic terminals. Through recurrent exocytosis and endocytosis, it facilitates a sequence of events enabling chemical neurotransmission between functionally related neurons. As a fundamental process that links the interior of nerve cells with their environment, the SVC is also critical for signaling and provides an entry route for a range of pathogens and toxins, enabling detrimental effects. In Alzheimer's disease, the SVC is both the prime site of amyloid β production and toxicity. In this study, we discuss the emerging evidence for physiological and pathological effects of Aβ on various stages of the SVC, from postfusion membrane recovery to trafficking, docking, and priming of vesicles for fusion and transmitter release. Understanding of the mechanisms of Aβ interaction with the SVC within the unifying calcium hypothesis of aging and Alzheimer's disease should further elucidate the fundamental biology of the presynaptic terminal and reveal novel therapeutic targets for Alzheimer's disease and other age-related dementias.

      Keywords

      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Abad-Rodriguez J.
        • Ledesma M.D.
        • Craessaerts K.
        • Perga S.
        • Medina M.
        • Delacourte A.
        • et al.
        Neuronal membrane cholesterol loss enhances amyloid peptide generation.
        J Cell Biol. 2004; 167: 953-960
        • Abramov E.
        • Dolev I.
        • Fogel H.
        • Ciccotosto G.D.
        • Ruff E.
        • Slutsky I.
        Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses.
        Nat Neurosci. 2009; 12: 1567-1576
        • Almeida C.G.
        • Takahashi R.H.
        • Gouras G.K.
        Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system.
        J Neurosci. 2006; 26: 4277-4288
        • Alzheimer's Association Calcium Hypothesis Workgroup
        Calcium Hypothesis of Alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis.
        Alzheimers Dement. 2017; 13: 178-182.e117
        • Arendt T.
        Synaptic degeneration in Alzheimer's disease.
        Acta Neuropathol. 2009; 118: 167-179
        • Arispe N.
        • Pollard H.B.
        • Rojas E.
        Zn2+ interaction with Alzheimer amyloid beta protein calcium channels.
        Proc Natl Acad Sci U S A. 1996; 93: 1710-1715
        • Arispe N.
        • Rojas E.
        • Pollard H.B.
        Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum.
        Proc Natl Acad Sci U S A. 1993; 90: 567-571
        • Berridge M.J.
        Calcium hypothesis of Alzheimer's disease.
        Pflugers Arch. 2010; 459: 441-449
        • Berridge M.J.
        Calcium signalling and Alzheimer's disease.
        Neurochem Res. 2011; 36: 1149-1156
        • Betz W.J.
        • Bewick G.S.
        Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction.
        Science. 1992; 255: 200-203
        • Bezprozvanny I.
        Calcium signaling and neurodegenerative diseases.
        Trends Mol Med. 2009; 15: 89-100
        • Bezprozvanny I.
        • Mattson M.P.
        Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease.
        Trends Neurosci. 2008; 31: 454-463
        • Billings L.M.
        • Oddo S.
        • Green K.N.
        • McGaugh J.L.
        • LaFerla F.M.
        Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice.
        Neuron. 2005; 45: 675-688
        • Blennow K.
        CSF biomarkers for mild cognitive impairment.
        J Intern Med. 2004; 256: 224-234
        • Bobich J.A.
        • Zheng Q.
        • Campbell A.
        Incubation of nerve endings with a physiological concentration of Abeta1-42 activates CaV2.2(N-Type)-voltage operated calcium channels and acutely increases glutamate and noradrenaline release.
        J Alzheimers Dis. 2004; 6: 243-255
        • Bu G.
        • Cam J.
        • Zerbinatti C.
        LRP in amyloid-beta production and metabolism.
        Ann N Y Acad Sci. 2006; 1086: 35-53
        • Buckner R.L.
        • Snyder A.Z.
        • Shannon B.J.
        • LaRossa G.
        • Sachs R.
        • Fotenos A.F.
        • et al.
        Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory.
        J Neurosci. 2005; 25: 7709-7717
        • Cabrejo L.
        • Guyant-Marechal L.
        • Laquerriere A.
        • Vercelletto M.
        • De la Fourniere F.
        • Thomas-Anterion C.
        • et al.
        Phenotype associated with APP duplication in five families.
        Brain. 2006; 129: 2966-2976
        • Cao Y.
        • Xiao Y.
        • Ravid R.
        • Guan Z.Z.
        Changed clathrin regulatory proteins in the brains of Alzheimer's disease patients and animal models.
        J Alzheimers Dis. 2010; 22: 329-342
        • Chakroborty S.
        • Stutzmann G.E.
        Early calcium dysregulation in Alzheimer's disease: setting the stage for synaptic dysfunction.
        Sci China Life Sci. 2011; 54: 752-762
        • Chin J.
        • Palop J.J.
        • Puolivali J.
        • Massaro C.
        • Bien-Ly N.
        • Gerstein H.
        • et al.
        Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer's disease.
        J Neurosci. 2005; 25: 9694-9703
        • Cirrito J.R.
        • Kang J.E.
        • Lee J.
        • Stewart F.R.
        • Verges D.K.
        • Silverio L.M.
        • et al.
        Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo.
        Neuron. 2008; 58: 42-51
        • Cirrito J.R.
        • Yamada K.A.
        • Finn M.B.
        • Sloviter R.S.
        • Bales K.R.
        • May P.C.
        • et al.
        Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo.
        Neuron. 2005; 48: 913-922
        • Cisse M.
        • Halabisky B.
        • Harris J.
        • Devidze N.
        • Dubal D.B.
        • Sun B.
        • et al.
        Reversing EphB2 depletion rescues cognitive functions in Alzheimer model.
        Nature. 2011; 469: 47-52
        • Citron M.
        Alzheimer's disease: strategies for disease modification.
        Nat Rev Drug Discov. 2010; 9: 387-398
        • Coulson E.J.
        Does the p75 neurotrophin receptor mediate Abeta-induced toxicity in Alzheimer's disease?.
        J Neurochem. 2006; 98: 654-660
        • Crews L.
        • Masliah E.
        Molecular mechanisms of neurodegeneration in Alzheimer's disease.
        Hum Mol Genet. 2010; 19: R12-R20
        • Davies C.A.
        • Mann D.M.
        • Sumpter P.Q.
        • Yates P.O.
        A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease.
        J Neurol Sci. 1987; 78: 151-164
        • Deane R.
        • Du Yan S.
        • Submamaryan R.K.
        • LaRue B.
        • Jovanovic S.
        • Hogg E.
        • et al.
        RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain.
        Nat Med. 2003; 9: 907-913
        • DeKosky S.T.
        • Scheff S.W.
        Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity.
        Ann Neurol. 1990; 27: 457-464
        • Demuro A.
        • Parker I.
        • Stutzmann G.E.
        Calcium signaling and amyloid toxicity in Alzheimer disease.
        J Biol Chem. 2010; 285: 12463-12468
        • Dineley K.T.
        • Bell K.A.
        • Bui D.
        • Sweatt J.D.
        Beta -Amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes.
        J Biol Chem. 2002; 277: 25056-25061
        • Durell S.R.
        • Guy H.R.
        • Arispe N.
        • Rojas E.
        • Pollard H.B.
        Theoretical models of the ion channel structure of amyloid beta-protein.
        Biophys J. 1994; 67: 2137-2145
        • Ehehalt R.
        • Keller P.
        • Haass C.
        • Thiele C.
        • Simons K.
        Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts.
        J Cell Biol. 2003; 160: 113-123
        • Fatt P.
        • Katz B.
        Spontaneous subthreshold activity at motor nerve endings.
        J Physiol. 1952; 117: 109-128
        • Filser S.
        • Ovsepian S.V.
        • Masana M.
        • Blazquez-Llorca L.
        • Brandt Elvang A.
        • Volbracht C.
        • et al.
        Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions.
        Biol Psychiatry. 2015; 77: 729-739
        • Flynn D.D.
        • Ferrari-DiLeo G.
        • Mash D.C.
        • Levey A.I.
        Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer's disease.
        J Neurochem. 1995; 64: 1888-1891
        • Giedraitis V.
        • Sundelof J.
        • Irizarry M.C.
        • Garevik N.
        • Hyman B.T.
        • Wahlund L.O.
        • et al.
        The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer's disease.
        Neurosci Lett. 2007; 427: 127-131
        • Gong Y.
        • Chang L.
        • Viola K.L.
        • Lacor P.N.
        • Lambert M.P.
        • Finch C.E.
        • et al.
        Alzheimer's disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss.
        Proc Natl Acad Sci U S A. 2003; 100: 10417-10422
        • Gouras G.K.
        • Olsson T.T.
        • Hansson O.
        beta-Amyloid peptides and amyloid plaques in Alzheimer's disease.
        Neurotherapeutics. 2015; 12: 3-11
        • Gouras G.K.
        • Relkin N.R.
        • Sweeney D.
        • Munoz D.G.
        • Mackenzie I.R.
        • Gandy S.
        Increased apolipoprotein E epsilon 4 in epilepsy with senile plaques.
        Ann Neurol. 1997; 41: 402-404
        • Gouras G.K.
        • Tsai J.
        • Naslund J.
        • Vincent B.
        • Edgar M.
        • Checler F.
        • et al.
        Intraneuronal Abeta42 accumulation in human brain.
        Am J Pathol. 2000; 156: 15-20
        • Green K.N.
        • LaFerla F.M.
        Linking calcium to Abeta and Alzheimer's disease.
        Neuron. 2008; 59: 190-194
        • Haass C.
        • Kaether C.
        • Thinakaran G.
        • Sisodia S.
        Trafficking and proteolytic processing of APP.
        Cold Spring Harb Perspect Med. 2012; 2: a006270
        • Hardy J.
        Alzheimer's disease: the amyloid cascade hypothesis: an update and reappraisal.
        J Alzheimers Dis. 2006; 9: 151-153
        • Hardy J.
        • Selkoe D.J.
        The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.
        Science. 2002; 297: 353-356
        • Hardy J.A.
        • Higgins G.A.
        Alzheimer's disease: the amyloid cascade hypothesis.
        Science. 1992; 256: 184-185
        • Holcomb L.
        • Gordon M.N.
        • McGowan E.
        • Yu X.
        • Benkovic S.
        • Jantzen P.
        • et al.
        Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes.
        Nat Med. 1998; 4: 97-100
        • Iribarren P.
        • Zhou Y.
        • Hu J.
        • Le Y.
        • Wang J.M.
        Role of formyl peptide receptor-like 1 (FPRL1/FPR2) in mononuclear phagocyte responses in Alzheimer disease.
        Immunol Res. 2005; 31: 165-176
        • Ittner L.M.
        • Ke Y.D.
        • Delerue F.
        • Bi M.
        • Gladbach A.
        • van Eersel J.
        • et al.
        Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models.
        Cell. 2010; 142: 387-397
        • Jahn R.
        • Scheller R.H.
        SNAREs–engines for membrane fusion.
        Nat Rev Mol Cell Biol. 2006; 7: 631-643
        • Kamenetz F.
        • Tomita T.
        • Hsieh H.
        • Seabrook G.
        • Borchelt D.
        • Iwatsubo T.
        • et al.
        APP processing and synaptic function.
        Neuron. 2003; 37: 925-937
        • Kang J.E.
        • Lim M.M.
        • Bateman R.J.
        • Lee J.J.
        • Smyth L.P.
        • Cirrito J.R.
        • et al.
        Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle.
        Science. 2009; 326: 1005-1007
        • Kanungo J.
        • Zheng Y.L.
        • Mishra B.
        • Pant H.C.
        Zebrafish Rohon-Beard neuron development: cdk5 in the midst.
        Neurochem Res. 2009; 34: 1129-1137
        • Kasparova J.
        • Lisa V.
        • Tucek S.
        • Dolezal V.
        Chronic exposure of NG108-15 cells to amyloid beta peptide (A beta(1-42)) abolishes calcium influx via N-type calcium channels.
        Neurochem Res. 2001; 26: 1079-1084
        • Katz B.
        • Miledi R.
        The role of calcium in neuromuscular facilitation.
        J Physiol. 1968; 195: 481-492
        • Kelly B.L.
        • Ferreira A.
        Beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons.
        J Biol Chem. 2006; 281: 28079-28089
        • Kelly B.L.
        • Ferreira A.
        Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons.
        Neuroscience. 2007; 147: 60-70
        • Kelly B.L.
        • Vassar R.
        • Ferreira A.
        Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease.
        J Biol Chem. 2005; 280: 31746-31753
        • Khachaturian Z.S.
        A Hypothesis: Regulation of Cytosolic Calcium in Aging and Alzheimer's Disease. Alzheimer's Disease: Advances in Basic Research and Therapies.
        (S. H. Corkin, J. H. Growdon and R. J. Wurtman. Zurich, Switzerland: The centre for Brain Sciences and Metabolism Charitable Trust)1984
        • Khachaturian Z.S.
        The role of calcium regulation in brain aging: reexamination of a hypothesis.
        Aging. 1989; 1: 17-34
        • Khachaturian Z.S.
        Calcium hypothesis of Alzheimer's disease and brain aging.
        Ann N Y Acad Sci. 1994; 747: 1-11
        • Kim S.H.
        • Ryan T.A.
        CDK5 serves as a major control point in neurotransmitter release.
        Neuron. 2010; 67: 797-809
        • Knobloch M.
        • Konietzko U.
        • Krebs D.C.
        • Nitsch R.M.
        Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice.
        Neurobiol Aging. 2007; 28: 1297-1306
        • LaFerla F.M.
        Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease.
        Nat Rev Neurosci. 2002; 3: 862-872
        • LaFerla F.M.
        • Green K.N.
        • Oddo S.
        Intracellular amyloid-beta in Alzheimer's disease.
        Nat Rev Neurosci. 2007; 8: 499-509
        • Lai A.Y.
        • McLaurin J.
        Mechanisms of amyloid-Beta Peptide uptake by neurons: the role of lipid rafts and lipid raft-associated proteins.
        Int J Alzheimers Dis. 2010; 2011: 548380
        • Laird F.M.
        • Cai H.
        • Savonenko A.V.
        • Farah M.H.
        • He K.
        • Melnikova T.
        • et al.
        BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions.
        J Neurosci. 2005; 25: 11693-11709
        • Lee E.K.
        • Park Y.W.
        • Shin D.Y.
        • Mook-Jung I.
        • Yoo Y.J.
        Cytosolic amyloid-beta peptide 42 escaping from degradation induces cell death.
        Biochem Biophys Res Commun. 2006; 344: 471-477
        • Lee M.S.
        • Kwon Y.T.
        • Li M.
        • Peng J.
        • Friedlander R.M.
        • Tsai L.H.
        Neurotoxicity induces cleavage of p35 to p25 by calpain.
        Nature. 2000; 405: 360-364
        • Li S.
        • Hong S.
        • Shepardson N.E.
        • Walsh D.M.
        • Shankar G.M.
        • Selkoe D.
        Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake.
        Neuron. 2009; 62: 788-801
        • Lin H.
        • Bhatia R.
        • Lal R.
        Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology.
        FASEB J. 2001; 15: 2433-2444
        • MacManus A.
        • Ramsden M.
        • Murray M.
        • Henderson Z.
        • Pearson H.A.
        • Campbell V.A.
        Enhancement of (45)Ca(2+) influx and voltage-dependent Ca(2+) channel activity by beta-amyloid-(1-40) in rat cortical synaptosomes and cultured cortical neurons. Modulation by the proinflammatory cytokine interleukin-1beta.
        J Biol Chem. 2000; 275: 4713-4718
        • Marx J.
        Alzheimer's disease. Fresh evidence points to an old suspect: calcium.
        Science. 2007; 318: 384-385
        • Mattson M.P.
        Pathways towards and away from Alzheimer's disease.
        Nature. 2004; 430: 631-639
        • Mattson M.P.
        • Barger S.W.
        • Cheng B.
        • Lieberburg I.
        • Smith-Swintosky V.L.
        • Rydel R.E.
        Beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer's disease.
        Trends Neurosci. 1993; 16: 409-414
        • McClean P.L.
        • Parthsarathy V.
        • Faivre E.
        • Holscher C.
        The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease.
        J Neurosci. 2011; 31: 6587-6594
        • Mezler M.
        • Barghorn S.
        • Schoemaker H.
        • Gross G.
        • Nimmrich V.
        A beta-amyloid oligomer directly modulates P/Q-type calcium currents in Xenopus oocytes.
        Br J Pharmacol. 2012; 165: 1572-1583
        • Moreno H.
        • Yu E.
        • Pigino G.
        • Hernandez A.I.
        • Kim N.
        • Moreira J.E.
        • et al.
        Synaptic transmission block by presynaptic injection of oligomeric amyloid beta.
        Proc Natl Acad Sci U S A. 2009; 106: 5901-5906
        • Muller U.C.
        • Deller T.
        • Korte M.
        Not just amyloid: physiological functions of the amyloid precursor protein family.
        Nat Rev Neurosci. 2017; 18: 281-298
        • Mura E.
        • Zappettini S.
        • Preda S.
        • Biundo F.
        • Lanni C.
        • Grilli M.
        • et al.
        Dual effect of beta-amyloid on α7 and α4β2 nicotinic receptors controlling the release of glutamate, aspartate and GABA in rat hippocampus.
        PLoS One. 2012; 7: e29661
        • Nagele R.G.
        • D'Andrea M.R.
        • Anderson W.J.
        • Wang H.Y.
        Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer's disease.
        Neuroscience. 2002; 110: 199-211
        • Nimmrich V.
        • Ebert U.
        Is Alzheimer's disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid.
        Rev Neurosci. 2009; 20: 1-12
        • Nimmrich V.
        • Grimm C.
        • Draguhn A.
        • Barghorn S.
        • Lehmann A.
        • Schoemaker H.
        • et al.
        Amyloid beta oligomers (A beta(1-42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents.
        J Neurosci. 2008; 28: 788-797
        • Oakley H.
        • Cole S.L.
        • Logan S.
        • Maus E.
        • Shao P.
        • Craft J.
        • et al.
        Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation.
        J Neurosci. 2006; 26: 10129-10140
        • Ochs S.M.
        • Dorostkar M.M.
        • Aramuni G.
        • Schon C.
        • Filser S.
        • Poschl J.
        • et al.
        Loss of neuronal GSK3beta reduces dendritic spine stability and attenuates excitatory synaptic transmission via beta-catenin.
        Mol Psychiatry. 2015; 20: 482-489
        • Oddo S.
        • Caccamo A.
        • Tran L.
        • Lambert M.P.
        • Glabe C.G.
        • Klein W.L.
        • et al.
        Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology.
        J Biol Chem. 2006; 281: 1599-1604
        • Oh S.
        • Hong H.S.
        • Hwang E.
        • Sim H.J.
        • Lee W.
        • Shin S.J.
        • et al.
        Amyloid peptide attenuates the proteasome activity in neuronal cells.
        Mech Ageing Dev. 2005; 126: 1292-1299
        • Overk C.R.
        • Masliah E.
        Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease.
        Biochem Pharmacol. 2014; 88: 508-516
        • Ovsepian S.V.
        • Antyborzec I.
        • O'Leary V.B.
        • Zaborszky L.
        • Herms J.
        • Oliver Dolly J.
        Neurotrophin receptor p75 mediates the uptake of the amyloid beta (Abeta) peptide, guiding it to lysosomes for degradation in basal forebrain cholinergic neurons.
        Brain Struct Funct. 2014; 219: 1527-1541
        • Ovsepian S.V.
        • Blazquez-Llorca L.
        • Freitag S.V.
        • Rodrigues E.F.
        • Herms J.
        Ambient glutamate promotes paroxysmal hyperactivity in cortical pyramidal neurons at amyloid plaques via presynaptic mGluR1 receptors.
        Cereb Cortex. 2017; 27: 4733-4749
        • Ovsepian S.V.
        • Dolly J.O.
        Dendritic SNAREs add a new twist to the old neuron theory.
        Proc Natl Acad Sci U S A. 2011; 108: 19113-19120
        • Ovsepian S.V.
        • Herms J.
        Cholinergic neurons-keeping check on amyloid beta in the cerebral cortex.
        Front Cell Neurosci. 2013; 7: 252
        • Ovsepian S.V.
        • Herms J.
        Drain of the brain: low-affinity p75 neurotrophin receptor affords a molecular sink for clearance of cortical amyloid beta by the cholinergic modulator system.
        Neurobiol Aging. 2013; 34: 2517-2524
        • Ovsepian S.V.
        • O′Leary V.B.
        Neuronal activity and amyloid plaque pathology: an update.
        J Alzheimers Dis. 2016; 49: 13-19
        • Palade G.E.
        • Palay S.L.
        Electron microscope observation of interneuronal and neuromuscular synapses.
        Anat Rec. 1954; 118: 335-336
        • Palop J.J.
        • Mucke L.
        Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks.
        Nat Neurosci. 2010; 13: 812-818
        • Park J.
        • Jang M.
        • Chang S.
        Deleterious effects of soluble amyloid-beta oligomers on multiple steps of synaptic vesicle trafficking.
        Neurobiol Dis. 2013; 55: 129-139
        • Parodi J.
        • Sepulveda F.J.
        • Roa J.
        • Opazo C.
        • Inestrosa N.C.
        • Aguayo L.G.
        Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure.
        J Biol Chem. 2010; 285: 2506-2514
        • Poirier M.A.
        • Xiao W.
        • Macosko J.C.
        • Chan C.
        • Shin Y.K.
        • Bennett M.K.
        The synaptic SNARE complex is a parallel four-stranded helical bundle.
        Nat Struct Biol. 1998; 5: 765-769
        • Pozueta J.
        • Lefort R.
        • Shelanski M.L.
        "Synaptic changes in Alzheimer's disease and its models.".
        Neuroscience. 2013; 251: 51-65
        • Price S.A.
        • Held B.
        • Pearson H.A.
        Amyloid beta protein increases Ca2+ currents in rat cerebellar granule neurones.
        Neuroreport. 1998; 9: 539-545
        • Puzzo D.
        • Arancio O.
        Amyloid-beta peptide: Dr. Jekyll or Mr. Hyde?.
        J Alzheimers Dis. 2013; 33 Suppl 1: S111-S120
        • Puzzo D.
        • Privitera L.
        • Leznik E.
        • Fa M.
        • Staniszewski A.
        • Palmeri A.
        • et al.
        Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus.
        J Neurosci. 2008; 28: 14537-14545
        • Qu J.
        • Nakamura T.
        • Cao G.
        • Holland E.A.
        • McKercher S.R.
        • Lipton S.A.
        S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide.
        Proc Natl Acad Sci U S A. 2011; 108: 14330-14335
        • Raichle M.E.
        • MacLeod A.M.
        • Snyder A.Z.
        • Powers W.J.
        • Gusnard D.A.
        • Shulman G.L.
        A default mode of brain function.
        Proc Natl Acad Sci U S A. 2001; 98: 676-682
        • Ramsden M.
        • Henderson Z.
        • Pearson H.A.
        Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid beta protein (1-40) is dependent on solubility status.
        Brain Res. 2002; 956: 254-261
        • Randall A.D.
        • Witton J.
        • Booth C.
        • Hynes-Allen A.
        • Brown J.T.
        The functional neurophysiology of the amyloid precursor protein (APP) processing pathway.
        Neuropharmacology. 2010; 59: 243-267
        • Renner M.
        • Lacor P.N.
        • Velasco P.T.
        • Xu J.
        • Contractor A.
        • Klein W.L.
        • et al.
        Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5.
        Neuron. 2010; 66: 739-754
        • Rizzoli S.O.
        • Betz W.J.
        Synaptic vesicle pools.
        Nat Rev Neurosci. 2005; 6: 57-69
        • Rovelet-Lecrux A.
        • Hannequin D.
        • Raux G.
        • Le Meur N.
        • Laquerriere A.
        • Vital A.
        • et al.
        APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy.
        Nat Genet. 2006; 38: 24-26
        • Russell C.L.
        • Semerdjieva S.
        • Empson R.M.
        • Austen B.M.
        • Beesley P.W.
        • Alifragis P.
        Amyloid-beta acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2.
        PLoS One. 2012; 7: e43201
        • Saheki Y.
        • De Camilli P.
        Synaptic vesicle endocytosis.
        Cold Spring Harb Perspect Biol. 2012; 4: a005645
        • Salomone S.
        • Caraci F.
        • Leggio G.M.
        • Fedotova J.
        • Drago F.
        New pharmacological strategies for treatment of Alzheimer's disease: focus on disease modifying drugs.
        Br J Clin Pharmacol. 2012; 73: 504-517
        • Sasaki N.
        • Toki S.
        • Chowei H.
        • Saito T.
        • Nakano N.
        • Hayashi Y.
        • et al.
        Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer's disease.
        Brain Res. 2001; 888: 256-262
        • Saura C.A.
        • Choi S.Y.
        • Beglopoulos V.
        • Malkani S.
        • Zhang D.
        • Shankaranarayana Rao B.S.
        • et al.
        Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration.
        Neuron. 2004; 42: 23-36
        • Schmidt S.D.
        • Nixon R.A.
        • Mathews P.M.
        ELISA method for measurement of amyloid-beta levels.
        Methods Mol Biol. 2005; 299: 279-297
        • Seabrook G.R.
        • Smith D.W.
        • Bowery B.J.
        • Easter A.
        • Reynolds T.
        • Fitzjohn S.M.
        • et al.
        Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein.
        Neuropharmacology. 1999; 38: 349-359
        • Selkoe D.J.
        Alzheimer's disease is a synaptic failure.
        Science. 2002; 298: 789-791
        • Serrano-Pozo A.
        • Frosch M.P.
        • Masliah E.
        • Hyman B.T.
        Neuropathological alterations in Alzheimer disease.
        Cold Spring Harb Perspect Med. 2011; 1: a006189
        • Shankar G.M.
        • Bloodgood B.L.
        • Townsend M.
        • Walsh D.M.
        • Selkoe D.J.
        • Sabatini B.L.
        Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway.
        J Neurosci. 2007; 27: 2866-2875
        • Shankar G.M.
        • Li S.
        • Mehta T.H.
        • Garcia-Munoz A.
        • Shepardson N.E.
        • Smith I.
        • et al.
        Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory.
        Nat Med. 2008; 14: 837-842
        • Sharma M.
        • Burre J.
        • Sudhof T.C.
        Proteasome inhibition alleviates SNARE-dependent neurodegeneration.
        Sci Transl Med. 2012; 4: 147ra113
        • Shirwany N.A.
        • Payette D.
        • Xie J.
        • Guo Q.
        The amyloid beta ion channel hypothesis of Alzheimer's disease.
        Neuropsychiatr Dis Treat. 2007; 3: 597-612
        • Small D.H.
        Dysregulation of calcium homeostasis in Alzheimer's disease.
        Neurochem Res. 2009; 34: 1824-1829
        • Snyder E.M.
        • Nong Y.
        • Almeida C.G.
        • Paul S.
        • Moran T.
        • Choi E.Y.
        • et al.
        Regulation of NMDA receptor trafficking by amyloid-beta.
        Nat Neurosci. 2005; 8: 1051-1058
        • Sudhof T.C.
        The synaptic vesicle cycle: a cascade of protein-protein interactions.
        Nature. 1995; 375: 645-653
        • Supnet C.
        • Noonan C.
        • Richard K.
        • Bradley J.
        • Mayne M.
        Up-regulation of the type 3 ryanodine receptor is neuroprotective in the TgCRND8 mouse model of Alzheimer's disease.
        J Neurochem. 2010; 112: 356-365
        • Sutton R.B.
        • Fasshauer D.
        • Jahn R.
        • Brunger A.T.
        Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution.
        Nature. 1998; 395: 347-353
        • Takahashi R.H.
        • Nagao T.
        • Gouras G.K.
        Plaque formation and the intraneuronal accumulation of beta-amyloid in Alzheimer's disease.
        Pathol Int. 2017; 67: 185-193
        • Tampellini D.
        • Capetillo-Zarate E.
        • Dumont M.
        • Huang Z.
        • Yu F.
        • Lin M.T.
        • et al.
        Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice.
        J Neurosci. 2010; 30: 14299-14304
        • Tan T.C.
        • Valova V.A.
        • Malladi C.S.
        • Graham M.E.
        • Berven L.A.
        • Jupp O.J.
        • et al.
        Cdk5 is essential for synaptic vesicle endocytosis.
        Nat Cell Biol. 2003; 5: 701-710
        • Terry R.D.
        • Masliah E.
        • Salmon D.P.
        • Butters N.
        • DeTeresa R.
        • Hill R.
        • et al.
        Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.
        Ann Neurol. 1991; 30: 572-580
        • Thinakaran G.
        • Koo E.H.
        Amyloid precursor protein trafficking, processing, and function.
        J Biol Chem. 2008; 283: 29615-29619
        • Ting J.T.
        • Kelley B.G.
        • Lambert T.J.
        • Cook D.G.
        • Sullivan J.M.
        Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms.
        Proc Natl Acad Sci U S A. 2007; 104: 353-358
        • Tseng B.P.
        • Green K.N.
        • Chan J.L.
        • Blurton-Jones M.
        • LaFerla F.M.
        Abeta inhibits the proteasome and enhances amyloid and tau accumulation.
        Neurobiol Aging. 2008; 29: 1607-1618
        • Um J.W.
        • Strittmatter S.M.
        Amyloid-beta induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease.
        Prion. 2013; 7: 37-41
        • Vassar R.
        • Bennett B.D.
        • Babu-Khan S.
        • Kahn S.
        • Mendiaz E.A.
        • Denis P.
        • et al.
        Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE.
        Science. 1999; 286: 735-741
        • Wei W.
        • Nguyen L.N.
        • Kessels H.W.
        • Hagiwara H.
        • Sisodia S.
        • Malinow R.
        Amyloid beta from axons and dendrites reduces local spine number and plasticity.
        Nat Neurosci. 2010; 13: 190-196
        • Williams J.H.
        • Wilcock G.K.
        • Seeburger J.
        • Dallob A.
        • Laterza O.
        • Potter W.
        • et al.
        Non-linear relationships of cerebrospinal fluid biomarker levels with cognitive function: an observational study.
        Alzheimers Res Ther. 2011; 3: 5
        • Wu F.
        • Yao P.J.
        Clathrin-mediated endocytosis and Alzheimer's disease: an update.
        Ageing Res Rev. 2009; 8: 147-149
        • Yamamoto K.
        • Tanei Z.I.
        • Hashimoto T.
        • Wakabayashi T.
        • Okuno H.
        • Naka Y.
        • et al.
        Chronic optogenetic activation augments aβ pathology in a mouse model of Alzheimer disease.
        Cell Rep. 2015; 11: 859-865
        • Yamashita T.
        • Hige T.
        • Takahashi T.
        Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse.
        Science. 2005; 307: 124-127
        • Yang Y.
        • Kim J.
        • Kim H.Y.
        • Ryoo N.
        • Lee S.
        • Kim Y.
        • et al.
        Amyloid-beta Oligomers May Impair SNARE-Mediated Exocytosis by Direct Binding to Syntaxin 1a.
        Cell Rep. 2015; 12: 1244-1251
        • Yao P.J.
        Synaptic frailty and clathrin-mediated synaptic vesicle trafficking in Alzheimer's disease.
        Trends Neurosci. 2004; 27: 24-29
        • Yao P.J.
        • Morsch R.
        • Callahan L.M.
        • Coleman P.D.
        Changes in synaptic expression of clathrin assembly protein AP180 in Alzheimer's disease analysed by immunohistochemistry.
        Neuroscience. 1999; 94: 389-394
        • Yao P.J.
        • Zhu M.
        • Pyun E.I.
        • Brooks A.I.
        • Therianos S.
        • Meyers V.E.
        • et al.
        Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease.
        Neurobiol Dis. 2003; 12: 97-109
        • Yu W.H.
        • Cuervo A.M.
        • Kumar A.
        • Peterhoff C.M.
        • Schmidt S.D.
        • Lee J.H.
        • et al.
        Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease.
        J Cell Biol. 2005; 171: 87-98
        • Zempel H.
        • Luedtke J.
        • Kumar Y.
        • Biernat J.
        • Dawson H.
        • Mandelkow E.
        • et al.
        Amyloid-beta oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin.
        EMBO J. 2013; 32: 2920-2937
        • Zheng L.
        • Cedazo-Minguez A.
        • Hallbeck M.
        • Jerhammar F.
        • Marcusson J.
        • Terman A.
        Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system.
        Transl Neurodegener. 2012; 1: 19